Quantum image classification using principal component analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum image classification using principal component analysis

We present a novel quantum algorithm for the classification of images. The algorithm is constructed using principal component analysis and von Neuman quantum measurements. In order to apply the algorithm we present a new quantum representation of grayscale images.

متن کامل

Principal Component Analysis for Hyperspectral Image Classification

The availability of hyperspectral images expands the capability of using image classification to study detailed characteristics of objects, but at a cost of having to deal with huge data sets. This work studies the use of the principal component analysis as a preprocessing technique for the classification of hyperspectral images. Two hyperspectral data sets, HYDICE and AVIRIS, were used for the...

متن کامل

Feature Based Image Classification by using Principal Component Analysis

Classification of different types of cloud images is the primary issue used to forecast precipitation and other weather constituents. A PCA based classification system has been presented in this paper to classify the different types of single-layered and multi-layered clouds. Principal Component Analysis (PCA) provides enhanced accuracy in features based image identification and classification ...

متن کامل

Phoneme Classification Using Kernel Principal Component Analysis

A substantial number of linear and nonlinear feature space transformation methods have been proposed in recent years. Using the so-called ”kernel-idea” well-known linear techniques such as Principal Component Analysis(PCA), Linear Discriminant Analysis(LDA) and Independent Component Analysis(ICA) can be non-linearized in a general way. The aim of this paper here is twofold. First, we describe t...

متن کامل

Color Image Processing Using Principal Component Analysis

It is known since 1988 that utilizing linear dimension reduction gives appropriate lower dimensional representation of homogenous swatches of color images of the nature. Though, it is common to see serious research projects, even dated 2005, which are based on the fixed color space paradigm. In this thesis, first experimental evaluations are performed to compare the principal component analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical and Applied Informatics

سال: 2015

ISSN: 1896-5334,2300-889X

DOI: 10.20904/271001